Biometry Protocol

Purpose

To measure and classify the plant life present at a Land Cover Sample Site to help determine the MUC classification

Overview

Students walk the half-diagonals of their Land Cover Sample Site and take one or more biometry measurements. These may include canopy cover and ground cover, identifying dominant and co-dominant vegetation species, and measuring tree circumference and height, and/or graminoid biomass.

Student Outcomes

Students will learn how to use biological sampling techniques to quantify and describe a Land Cover Sample Site.

Science Concepts

Physical Science

Objects have observable properties that can be measured using tools.

Life Science

Earth has many different environments that support many different kinds of organisms.

Organisms change the environment in which they live.

All populations living together and the physical factors with which they interact constitute an ecosystem.

Geography

The physical characteristics of place
The characteristics and spatial distribution
of ecosystems

Scientific Inquiry Abilities

Identify biometry measurements needed for MUC.

Use vegetation field guides to identify vegetation and species.

Interpret data to propose MUC classification.

Identify answerable questions.

Design and conduct scientific investigations.

Use appropriate mathematics to analyze data.

Develop descriptions and predictions using evidence.

Recognize and analyze alternative explanations.

Communicate procedures, descriptions, and predictions.

Level

A11

Time

Variable, depending on type and number of measurements taken

Frequency

As necessary to determine MUC at most sites, or, frequently as an enrichment study

Materials and Tools

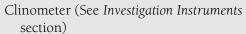
50 m tape measure

Compass

Species ID keys and/or other local species guides

MUC Field Guide or MUC System Table and MUC Glossary of Terms

Permanent tree markers (optional)


Pen or pencil

Calculator (optional)

Appropriate Biometry Data Sheets
Tubular densiometer (See Investigation
Instruments section)

Flexible tape measure

Blindfold

Clipboard

Small bean bag

Grass clippers or strong scissors

Small brown paper bags

Drying oven

Balance or scale, accurate to 0.1 g

Preparation

Make copies of the appropriate *Work Sheets*.

Familiarize students with the MUC System.

Gather materials for clinometer and densiometer.

Have students practice taking field measurements, pacing and using a compass.

Prerequisites

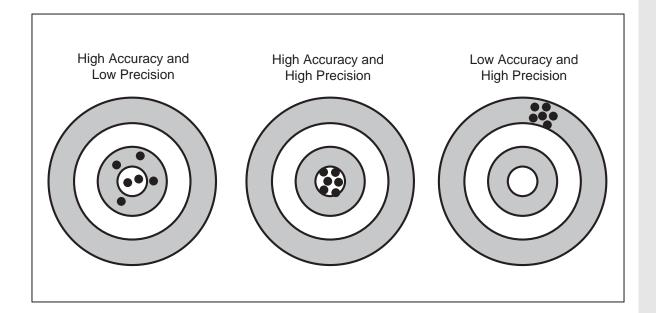
Students make necessary field instruments.

Site-Seeing Learning Activity

Biometry Protocol – Introduction

Biometry is the measuring of living things. Why do scientists need measurements of living things? What do they tell us about our environment? The biometry measurements include tree height and circumference, canopy cover, ground cover, and *graminoid* biomass. Graminoids are grass and grass-like plants. These all measure the size or amount of trees and plants.

What do trees and plants store? What are they made of? Can different types of land cover have different size trees, shrubs or grasses? Can they have different amounts of trees, shrubs or grasses? Think about a desert. What is the most common tree or shrub there? Is that a sign of what kind of area it is? Compare that to the most common tree in a forest.


Can the *same* types of land cover have different size trees, shrubs or grasses? Can there be different amounts of trees, shrubs or grasses? Think about two wetlands. Are the trees, shrubs or grasses the same type and size in both areas?

Measurements of living things are important to scientists. They can show the amount of nutrients and gases living things store. They also show the amount of carbon and usable water stored in trees and plants.

Choosing the right MUC class can be hard. How do you know that you have a "deciduous forest" and not an "evergreen forest"? How do you know you are in a "shrubland" and not "woodland"? How do you know a site is "tall graminoid" and not "short graminoid"? Biometry measurements answer these questions.

Biometry measurements help you choose the right MUC class. What kinds of measurements will you need to decide between an evergreen and deciduous forest? What measurements will you need to decide if something is a shrub or a tree? What do you need to know to decide between a tall and short graminoid site?

Biometry measurements make your data more reliable. When scientists use your Land Cover Sample Site data, biometry measurements assure them that the data are of high quality. There are two tests of good measurement technique. Biometry measurements will help assess how close to the bull's-eye (the right answer) your data are. This is called *accuracy*. Your data are *precise* when you repeat measurements and get the same results throughout a site. The goal of GLOBE students should be to have their measurements look like the bull's eye in the center (see below), highly accurate and precise! Biometry measurements can help you do that.

Teacher Support

The *Biometry Protocol* is divided into four different measurements: canopy and ground cover, tree, shrub and/or graminoid height, tree circumference and graminoid biomass. You may choose to take biometry measurements only once in a site during peak growth, or you can return to the same site year after year and repeat the biometry measurements to track changes in the site biomass over time. You may also take biometry measurements twice a year in a single site year after year, once during peak foliage or growth and once during a time of low growth (i.e. winter or drought). You should always use the following two guidelines to determine what measurements you should take:

First, take ANY measurements necessary to determine the correct MUC class. Whenever a decision must be made between MUC classes, take the appropriate biometry measurement (i.e. canopy and ground cover or height) to make that decision. If the decision can be made without biometry measurements, it is not necessary to take any, but you may choose to do so to ensure accuracy.

Second, scientists will be using an aerial view when using the MUC and biometry data and you should too. Therefore, measurements of the dominant land cover in the highest canopy are the most important. Canopy cover refers to the upper layer of vegetation detected by satellite sensors. For instance, in a forest where there are tall trees covering the entire site, shrubs scattered throughout the site below the trees and some tall grasses on the forest floor, the biometry measurement that would be most important would be canopy and ground cover and tree height. You may choose to measure shrub height or graminoid biomass but since a satellite image would only portray the tree canopy, these data would be less important. Another example would be in herbaceous vegetation sites. If the area was primarily graminoid with two trees and several shrubs, the most useful biometry measurement would be graminoid biomass. (Note: If you use

the canopy and ground cover measurement to determine the MUC class, report that measurement also.) You can also measure the height of the shrubs and trees but since they are not the dominant land cover, the graminoids would dominate the satellite image in that area.

Student Preparation

Students should be able to define and identify a homogeneous land cover site.

Students should understand and know how to classify a site using the MUC System.

Students should make and know how to use the densiometer and clinometer.

Students should know how to use a compass.

Students should practice pacing techniques. They should know their pace and how many paces are in 21.2 meters.

Helpful Hints

- Practice these measurements in a location close to school to get some experience before using them in a Land Cover Sample Site.
- You or your students may want to investigate a potential site with a brief visit to make sure that it is large enough and homogeneous throughout before a longer data collection visit.
- When distinguishing between trees and shrubs, use the definition of a tree given in the *MUC Field Guide* and *MUC Glossary of Terms*: a tree is at least 5 meters tall. You may want to practice estimating this height with the clinometer near your school before entering the field.
- If the shrub canopy is below the observer, treat it as ground cover. Dwarf-shrubs are always considered ground cover.
- It is more efficient to have your students work in pairs or trios for this protocol.
- For more accurate readings, other pairs of students should repeat the measurements. If different teams of students repeat observations, report the average of these values if they generally agree.
- Before going into the field, teach your students how to use your local vegetation field guides.
- It is recommended that you consult local experts (Forest Service, County Extension Agent, etc.) to assist with species identification
- If your site experiences seasonal variation and you choose to track changes in biomass over time, take biometry measurements once during peak growing season and once during the least active season.
- If it takes smaller students more than forty paces to complete a diagonal, they may take measurements at every other pace.
- For younger students, if the angle on the clinometer is 45 degrees, the distance from the tree will equal the height of the tree

- above the student's eye level. See the Alternative Technique to Measure Tree Height on Level Ground: Simplified Clinometer Technique Field Guide.
- If you are going to revisit a forest or woodland site, mark and number/label the trees you use. Always measure the same trees, and report their heights and circumferences in the same order.
- Examples of forbs include clover, sunflowers, ferns, and milkweeds.
- Do not use a conventional oven to dry the graminoid vegetation. This is dangerous because the oven may have to be left on continuously for several days!
- In warm, dry climates, graminoid biomass samples can be dried in mesh bags outside.
- Make sure to use several small brown drying bags for proper drying of graminoid samples.
- If you are performing the *Canopy Cover* and Ground Cover measurements with a class, break the class into groups and have each group pace a different half-diagonal. Each group will need their own copy of the Field Guide, a Data Sheet, and a densiometer. Ideally, one person should serve as a 'pacer' and one should be the 'recorder.' The 'pacer' walks the distance and makes the measurements. The 'recorder' records the readings onto the Data Sheet and makes sure the 'pacer' is walking straight in the assigned direction. The 'pacer' should know how many of his/ her paces are in the 21.2 m length of the half-diagonal. Have each student write this number on their copy of the Field Guide. This is the total number of measurements/ paces to take in walking a half-diagonal from the center to the corner of the central 30 m x 30 m area.

What are the dominant and co-dominant species in your Land Cover Sample Site? Do these species always occur in sites that have the same MUC class?

Are the dominant and co-dominant species common in your area? Are these species native to your area? Are the trees mature or juvenile?

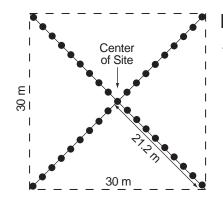
Is there a relationship between the amount of ground cover and canopy cover?

Are the percentages of the canopy and ground cover consistent with your MUC class?

Which is greater, the amount of brown or green ground cover? Do you think that these amounts will change during the year?

If your MUC 4 site has trees as the co-dominant species: Is the herbaceous vegetation around the trees the same as that in open areas?

Canopy Cover and Ground Cover


Field Guide

Task

Take ground and canopy cover measurements while pacing half-diagonals to determine the MUC class of your Land Cover Sample Sites.

What You Need

☐ Tubular densiometer	☐ Compass
🗖 Canopy and Ground Cover Data Sheet	lacksquare Species ID keys and/or other local species guides
☐ Pen or pencil	☐ Clipboard

The central 30 m x 30 m area of a Land Cover Sample Site with the four 21.2 m half-diagonals (in the NE, SE, SW and NW directions) for sampling.

- 1. Locate the center of your homogeneous Land Cover Sample Site. This is your starting point.
- 2. Choose a direction in which to walk: NE, NW, SE, or SW. Use a compass for bearing.
- 3. Look up through your densiometer. Be sure the metal nut or washer is directly below the crosshairs at the top of the tube. In column 1 of the *Canopy and Ground Cover Data Sheet* record:
 - "-" if you see sky above the crosshairs
 - "T" if you see leaves, twigs, or branches at the crosshairs and they are attached to a tree (greater than 5 meters tall)
 - "SB" if you see leaves, twigs or branches at the crosshairs and they are attached to a shrub (a woody plant between 50 cm and 5 meters tall)

- 4. In column 2 of the Canopy and Ground Cover Data Sheet record:
 - "-" if you see sky above the crosshairs
 - "E" if the tree or shrub you see is evergreen
 - "D" if the tree or shrub you see is deciduous
- 5. Stand with your feet shoulder-width apart. Look down and observe any vegetation that is touching your feet or legs below the knee. In column 3 of the *Canopy and Ground Cover Data Sheet* record:
 - "-" if there is no vegetation
 - "B" if there is brown vegetation (still attached to the ground)
 - "G" if there is green vegetation and in column 4 identify the type of green vegetation
- 6. In column 5 of the *Canopy and Ground Cover Data Sheet* record the species name or common name of the tallest tree or shrub you have observed at this spot.
- 7. In column 6 of the Canopy and Ground Cover Data Sheet record:
 - "+" if the tallest vegetation is a shrub
 - "-" if the tallest vegetation is not a shrub
- 8. In column 7 of the Canopy and Ground Cover Data Sheet record:
 - "+"if the tallest vegetation is a dwarf shrub
 - "-" if the tallest vegetation is not a dwarf shrub
- 9. Take a pace (two steps) in the direction you are going. Repeat steps 3 to 8. Stop when you have gone 21.2 meters and reached the corner of your sample area.
- 10. Repeat steps 2 to 9 for another direction until all four are measured or share your data with other students who have paced the other diagonals of your sample area.
- 11. Complete the tables at the bottom of page 2 of the *Canopy and Ground Cover Data Sheet* using the total data collected from all four diagonals. Calculate the percentages indicated.
- 12. Use these data to help determine or confirm your choice of a MUC classification and to determine dominant and co-dominant species for your site. Report these data to GLOBE.

Determining the percentage tree canopy cover:

% Tree Cover =
$$\frac{\text{Total "T" Canopy Observations}}{\text{Total Observations}} \times 100$$

Determining the percentage evergreen canopy cover:

Determining the percentage deciduous canopy cover:

Determining the percentage graminoid canopy cover:

Determining the percentage shrub canopy cover is more complicated. If shrubs occur under trees, the canopy cover is tree not shrub.

% Shrub Cover =
$$\frac{\text{Total Observations where Shrubs are the tallest vegetation}}{\text{Total Observations}} \times 100$$

Determining the percentage dwarf shrub canopy cover is also more complicated. If dwarf shrubs occur under trees or shrubs, the canopy cover is tree or shrub and not dwarf shrub.

% Dwarf Shrub Cover =
$$\frac{\text{Total Observations where Dwarf Shrubs are the tallest vegetation}}{\text{Total Observations}} \times X = \frac{\text{Total Observations}}{\text{Total Observations}} \times X = \frac{\text{Total Observations}}{\text{Total$$

Graminoid, Tree and Shrub Height

Field Guide

What You Need

Graminoid, Tree, and Shrub Height Data Sheet

Task

Measure the height of graminoid vegetation, shrubs and/or trees to help determine the MUC class of your Land Cover Sample Site.

☐ 50 m measuring tape	☐ Pen or pencil
☐ Flexible measuring tape	☐ Permanent tree markers (optional)
☐ Small bean bag	☐ Clinometer

Species ID keys and/or other local
species guides

☐ Blindfold

- 1. Measuring Graminoid Vegetation Height (Graminoids are grass-like species.)
 - a. Stand in the center of your Land Cover Sample Site and blindfold your partner. Have him or her throw a beanbag somewhere in the site.
 - b. Using the flexible measuring tape, measure the height of the herbaceous vegetation where the beanbag landed. Measure from the ground to the top of the graminoids.
 - c. Record the height on the *Graminoid*, *Tree*, and *Shrub Height Data Sheet*.
 - d. Repeat this process two more times and average the results.
 - e. Use this average to determine your MUC class.
- 2. Measuring Shrub Height (Shrubs are 0.5 m to 5.0 m tall.)
 - a. Stand in the center of your Land Cover Sample Site and blindfold your partner. Have him or her throw a beanbag somewhere in the site.
 - b. Locate the closest shrub to the beanbag. Measure the height of the shrub from the ground to the tallest branch. Do this with a tape measure if possible. If the shrub is too tall, measure it with your clinometer using the directions for *Measuring Tree Height* in the next section.
 - c. Record the height on the Graminoid, Tree, and Shrub Height Data Sheet.
 - d. Repeat this process two more times and average the results.
 - e. Use this average to determine your MUC class.

- 3. Measuring Tree Height (Hint: Trees are greater than 5.0 m tall.)
 - a. Determine your dominant (most common) and co-dominant (second-most common) tree species by counting the number of times each tree species was recorded on the *Canopy and Ground Cover Data Sheet*. Record the names of the species on your *Graminoid*, *Tree and Shrub Height Data Sheet*.

b. Choose:

- the tallest tree of the dominant species
- the shortest tree of the dominant species that still reaches the canopy
- three trees that have heights in between the tallest and shortest of the dominant species
- c. Permanently mark and number/label the trees if your teacher has instructed you to do so or if you will be returning to this site to take measurements over time.
- d. Measure the height of the tree using the clinometer. If you are on ground with a slope, or using the simplified clinometer technique, then use the appropriate *Alternative Technique to Measure Tree Height Field Guide* to substitute for the steps below. Otherwise,
 - Move away from the base of the tree until you can see the top of the tree through the drinking straw of the clinometer.
 - For the best results, adjust your distance from the base of the tree so that the clinometer reads as close to 30° as possible and you are at least as far from the tree as it is tall.
 - Be sure to be on level ground so that your feet are at the same elevation as the base of the tree. Remember, if you are not on the same level with the tree, you need to use an *Alternative Technique to Measure Tree Height Field Guide*.
 - Have your partner read and record the number of degrees (°) of the angle.
 - Using the Table of Tangents, record the TAN of the angle on the Data Sheet.
 - Measure the distance between you and the tree. Have your partner help you using the 50 m tape. Record this in the table on your *Data Sheet*.
 - Measure the height from the ground to your eye level. (You only need to do this step once!) Record this in the table.
 - Calculate the tree height using the following formula:
 - Height of Tree = TAN (angle of clinometer) x (distance to tree) + eye height and record on your *Data Sheet*.
 - Measure the height of each tree three times and calculate the average of the three heights. If they are within one meter, record the average on your *Data Sheet*. If not, repeat the measurements until they are within one meter.
- e. Repeat the step above for the other four trees.
- f. If your co-dominant species is a tree, repeat steps b-e for the co-dominant tree species. If you do not have five co-dominant species trees on your site, include other tree species to make a total of five. Note that you are using other species in the *Metadata*.

Tree Circumference

Field Guide

Task

Make circumference measurements for your selected dominant and co-dominant trees. Use the same trees you measured for tree height (in the same order).

Wh	at	You	Nec	ed

☐ Flexible measuring tape	☐ Pen or pencil
☐ Tree Circumference Data Sheet	☐ Species ID keys and/or other local species guides

- 1. With the flexible tape measure, measure from the ground at the base of the tree to a height of 1.35 m up on the tree (called Breast Height).
- 2. Measure the circumference in centimeters at Breast Height.
- 3. Record this on the *Tree Circumference Data Sheet*.
- 4. Repeat this for each of the trees you measured for height.

Graminoid Biomass

Field and Lab Guide

Task

Measure Graminoid Biomass in Land Cover Sample Sites. **Note:** Graminoid refers to grass-like vegetation only.

What Vou Need	•

☐ Small bean bag	☐ Grass clippers or strong scissors
🗖 Graminoid Biomass Data Sheet	☐ Small brown paper bags
☐ Pen or pencil	☐ Species ID keys and/or other local species guides
☐ Blindfold	☐ Balance

In the Field

- 1. Blindfold your partner and have him or her throw a beanbag somewhere in the site.
 - a. Mark a one-meter square around the beanbag to take a random sample.
 - b. Using the garden clippers, clip all the vegetation close to the ground within the square. Do not collect any unattached leaves or litter.
 - c. Sort the clippings into green and brown portions. Any clipping with even a little green is considered green.
 - d. Place the green and brown portions into separate brown paper bags. Label the bags as your teacher directs you.
- 2. Repeat step 1 two more times.

In the Classroom

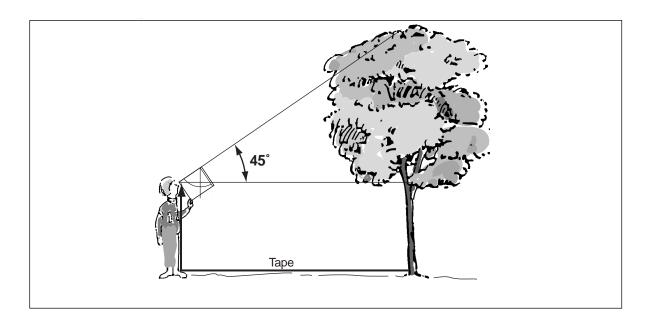
- 3. Calculating Graminoid Biomass:
 - a. Check the temperature of the drying oven, it should read between 50 and 70 degrees Celsius.
 - b. Put the labeled bags in the drying oven.
 - c. Use a balance to measure the mass (g) of each bag once a day.
 - d. When the mass is the same two days in a row, the samples are completely dry.
 - e. Record the mass of each bag and its contents on the Graminoid Biomass Data Sheet.
 - f. Shake out the contents of one bag and weigh the empty bag. Record this mass. Repeat this step for each bag.
 - g. Calculate the mass of the graminoid vegetation (graminoid biomass) using the following formula:

Graminoid Biomass = Mass of Sample and Bag – Mass of Empty Bag

h. Record the graminoid biomass of each sample on the Graminoid Biomass Data Sheet.

Measure Tree Height on Level Ground: Simplified Clinometer Technique

Field Guide


Task

Measure heights of shrubs and/or trees to help determine the MUC class of your Land Cover Sample Sites.

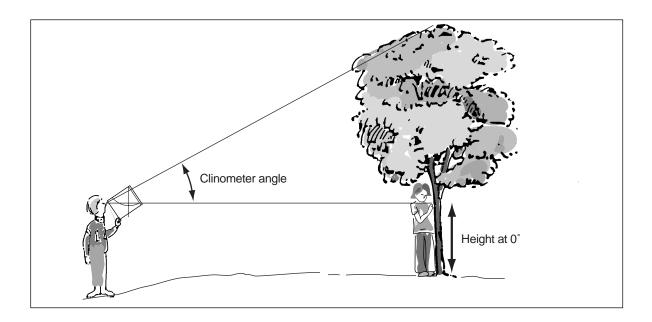
What You Need

☐ 50 m measuring tape	☐ Pen or pencil
☐ Flexible measuring tape	☐ Permanent tree markers (optional)
☐ Small bean bag	☐ Clinometer
☐ Measure Tree Height on Level Ground: Simplified Clinometer Technique Data Sheet	☐ Species ID keys and/or other local species guides
	☐ Blindfold

- 1. Work in a team of two or three. Move away from the base of the tree until the clinometer reads 45 degrees when you see the top of the tree through the straw.
- 2. Have your partner stretch the 50 m measuring tape from the base of the tree to your toes. Your partner should then step on the tape at the ground and then run it up to your eye level.
- 3. This is the height of the tree. Record this on the Measure Tree Height on Level Ground: Simplified Clinometer Technique Data Sheet.
- 4. Repeat steps 1-3 two more times for each tree and report the average value.

Measure Tree Height on a Slope: Stand by Tree Technique

Field Guide


Mile of Mars Nacod

Task

Measure heights of shrubs and/or trees to help determine the MUC class of your Land Cover Sample Sites.

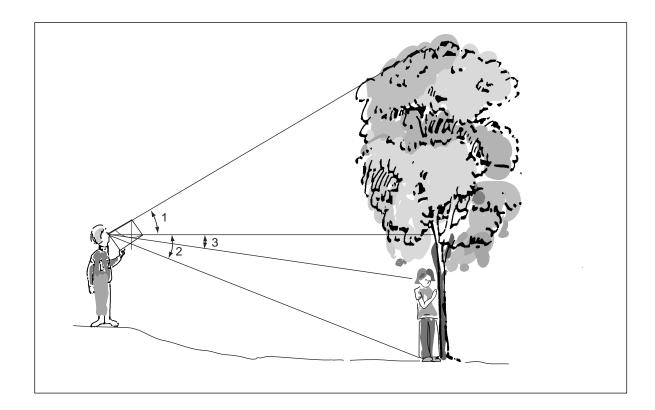
wnat you neea	
☐ 50 m measuring tape	☐ Pen or pencil
☐ Flexible measuring tape	☐ Permanent tree markers (optional)
☐ Small bean bag	☐ Clinometer
☐ Measure Tree Height: Stand by Tree Technique Data Sheet	☐ Species ID keys and/or other local species guides
	☐ Blindfold

- 1. Work in a team of three. One person stays by the tree. You and another partner move away from the base of the tree until you can see the top of the tree through the drinking straw of the clinometer. **Note:** For the best results, adjust your distance so that the clinometer is as close to 30 degrees as possible and you are further from the tree than it is tall.
- 2. Site the top of the tree using the clinometer. Have your partner read and record the clinometer angle.
- 3. Using the *Table of Tangents*, record the TAN of the angle on the *Measure Tree Height: Stand by Tree Technique Data Sheet*.
- 4. Keeping the clinometer at 0 degrees, look through the straw and have your partner by the tree locate the position on the tree that you see.
- 5. Measure the height from the base of the tree to the position on the tree that you see when the clinometer reads 0 degrees.
- 6. Measure the distance between you and the tree. Have your partner help you using the 50 m tape. Record this in the *Measure Tree Height: Stand by Tree Technique Data Sheet*.

- 7. Calculate the tree height using the following formula:
 - [TAN (Angle of the Clinometer) x (Distance to Tree)] + (Height to 0 Degrees on Tree)
- 8. Record the tree height in the Measure Tree Height: Stand by Tree Technique Data Sheet.
- 9. Repeat steps 1-8 two more times for each tree and report the average value

Measure Tree Height on a Slope: Two-Triangle with Feet Higher than Tree Base Technique

Field Guide


Task

Measure heights of shrubs and/or trees to help determine the MUC class of your Land Cover Sample Sites.

Wha	t You	Ne	ed
-----	-------	----	----

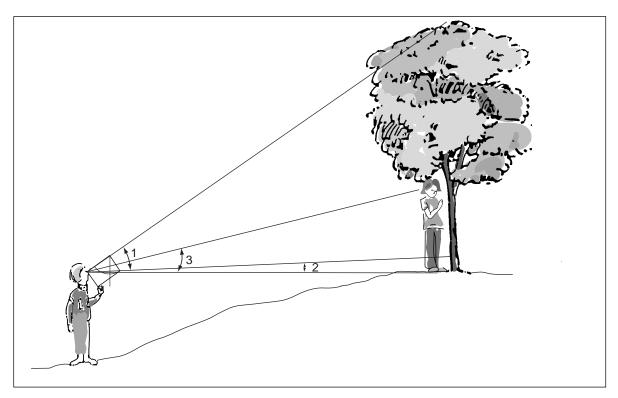
☐ 50 m measuring tape	Pen or pencil
$oxedsymbol{\Box}$ Flexible measuring tape	☐ Permanent tree markers (optional)
🗖 Small bean bag	☐ Clinometer
 Measure Tree Height on a Slope: Two-Triangle with Feet Higher than Tree Base Technique Data Sheet 	Species ID keys and/or other local species guidesBlindfold
☐ Table of Cosines	

- 1. Work in a team of three. Two of you should be about the same height. You and another partner move away from the base of the tree until you can see the top of the tree through the drinking straw of the clinometer. **Note:** For the best results, adjust your distance so that the clinometer is as close to 30 degrees as possible and you are further from the tree than it is tall.
- 2. Site the top of the tree using the clinometer. Have your partner read and record the clinometer angle. This is $\angle 1$.
- 3. Using the *Table of Tangents*, record the TAN of the angle on the *Measure Tree Height on a Slope:* Two-Triangle with Feet Higher than Tree Base Technique Data Sheet.
- 4. Turn the clinometer around and look through the straw through the opposite end. Site the base of the tree. Have your partner read and record this clinometer angle. This is \angle 2.
- 5. Using the *Table of Tangents*, record the TAN of the angle on the *Measure Tree Height on a Slope:* Two-Triangle with Feet Higher than Tree Base Technique Data Sheet.
- 6. Have your partner who is about your height stand by the tree. Site your partner's eyes through the straw of the clinometer. Your other partner reads and records this clinometer angle. This is ∠ 3.
- 7. Using the *Table of Cosines*, record the COS of the angle on the *Measure Tree Height on a Slope: Two-Triangle with Feet Higher than Tree Base Technique Data Sheet.*

- 8. Measure the horizontal distance from you to the base of the tree. Have your partner help you using the 50 m tape. Record this in the Measure Tree Height on a Slope: Two-Triangle with Feet Higher than Tree Base Technique Data Sheet.
- 9. Calculate the Baseline using the following formula:
 - (Distance to the Tree) x COS (Angle to Partner's Eyes)
- 10. Calculate the tree height using the following formula:
 - TAN (1st Angle of the Clinometer) x (Baseline) + TAN (2nd Angle of the Clinometer) x (Baseline)
- 11. Record the tree height in the Measure Tree Height on a Slope: Two-Triangle with Feet Higher than Tree Base Technique Data Sheet.
- 12. Repeat steps 1-11 two more times for each tree and report the average value.

Measure Tree Height on a Slope: Two-Triangle with Feet Lower than Tree Base

Field Guide


Task

Measure heights of shrubs and/or trees to help determine the MUC class of your Land Cover Sample Sites.

Wh	at	You	Ne	ed
----	----	-----	----	----

□ 50 m measuring tape	☐ Pen or pencil
☐ Flexible measuring tape	☐ Permanent tree markers (optional)
→ Small bean bag	☐ Clinometer
→ Measure Tree Height on a Slope: Two-Triangle with Feet Lower than Tree Base Data Sheet	☐ Species ID keys and/or other local species guides
☐ Table of Cosines	☐ Blindfold

- 1. Work in a team of three. Two of you should be about the same height. You and another partner move away from the base of the tree until you can see the top of the tree through the drinking straw of the clinometer. **Note:** For the best results, adjust your distance so that the clinometer is as close to 30 degrees as possible and you are further from the tree than it is tall.
- 2. Site the top of the tree using the clinometer. Have your partner read and record the clinometer angle. This is $\angle 1$.
- 3. Using the *Table of Tangents*, record the TAN of the angle on the *Measure Tree Height on a Slope: Two-Triangle with Feet Lower than Tree Base Data Sheet.*
- 4. Site the base of the tree using the clinometer. Have your partner read and record this clinometer angle. This is \angle 2.
- 5. Using the *Table of Tangents*, record the TAN of the angle on the *Measure Tree Height on a Slope: Two-Triangle with Feet Lower than Tree Base Data Sheet.*
- 6. Have your partner who is about your height stand by the tree. Site your partner's eyes through the straw of the clinometer. Your other partner reads and records this clinometer angle. This is $\angle 3$.
- 7. Using the *Table of Cosines*, record the COS of the angle on the *Measure Tree Height on a Slope: Two-Triangle with Feet Lower than Tree Base Data Sheet.*

- 8. Measure the horizontal distance from you to the base of the tree. Have your partner help you using the 50 m tape. Record this in the Measure Tree Height on a Slope: Two-Triangle with Feet Lower than Tree Base Data Sheet.
- 9. Calculate the Baseline using the following formula: (Distance to the Tree) x COS (Angle to Partner's Eyes)
- 10. Calculate the tree height using the following formula: TAN (1^{st} Angle of the Clinometer) x (Baseline) TAN (2^{nd} Angle of the Clinometer) x (Baseline)
- 11. Record the tree height in the Measure Tree Height on a Slope: Two-Triangle with Feet Lower than Tree Base Data Sheet.
- 12. Repeat steps 1-11 two more times for each tree and report the average value.

Frequently Asked Questions

1. We have a MUC 0; however, no particular species is dominant. What should we do?

In your metadata, record that you have a mix of species for the dominant species and what those species are in the metadata. If you take tree height and circumference measurements, use the same criteria for selecting the trees but report the canopy as "mixed."

2. What should we do if there is a multistoried canopy?

If there is a multi-story canopy, try to identify the highest level of the canopy without changing your position. If the vegetation touches the intersection of the crosshairs, mark a (+).

3. What if the entire circle I see through the densiometer is full of vegetation, but there is no vegetation at the crosshairs?

This is a sampling question. The Land Cover/Biology Team has chosen the intersection of the crosshairs as the sample. Therefore, this would be a (–).

4. What if we can't get to our site during peak vegetation (full leaf-on) conditions?

If you cannot get to your site during peak growth (leaf-on), measure your site during the leaf-off period and try your best to get the peak growth (leaf-on) data, when you can.

5. What if my students are too young to understand the math used to determine tree height?

Use the Simplified Technique for Measuring Tree Height on Level Ground.

6. What if I want to measure the heights of trees on a slope?

There are additional guides for these situations that provide different methods to measure the heights of trees on slopes. The one you choose depends on the topography of your site.

7. What if the tree is leaning?

If the tree is leaning, just measure to the top of the tree as usual. Measure the baseline distance to a point directly below the highest point of the canopy, which may not be where the trunk of the tree meets the ground.

8. What if the canopy cover is thick and I cannot clearly see the top of individual trees?

A very thick canopy often occurs in areas where many of the trees are very close in height. You may have to move around your area to find a good sight-line to the tops of your trees.

9. How accurate is measuring tree heights?

Like any other measurement, accuracy and precision increase with practice and the use of care in the measurement. Three groups measuring the same tree should get results within +/- 1 meter of each other.

10. What do I do if I do not have a single codominant tree or shrub species?

If the co-dominant species is mixed at your site, measure the heights and circumferences for 5 trees or shrubs of different species. Note the species you are using in the Metadata.

11. What do I do if there are not 5 trees or shrubs of the dominant species at my site? Should I measure any heights and circumferences?

If there are less than five, measure all the trees or shrubs at your site and make a note in the Metadata.

12. My school does not have a drying oven. Can we dry the grass another way?

First, check to see if you can use a drying oven at a community college, university, government agency or some other business or organization in your community. In warm, dry climates, graminoid biomass samples can be dried in mesh bags outside. Do not use a conventional oven to dry the graminoid vegetation. This is dangerous!

13. When I am measuring grass biomass, what do I do with mosses or lichens?

Moss and lichens are considered "Other Green" and have their own designation on the *Canopy and Ground Cover Data Sheet*. Do not include mosses or lichens in your dried samples. Record in metadata if these species comprise a large part of your green ground cover.